数控机床控制系统的问题和功能
数控机床控制系统的常见问题:
一、报警指示灯显示故障
现代数控机床的CNC系统内部,除了上述的自诊断功能和状态显示等“软件”报警外,还有许多“硬件”报警指示灯,它们分布在电源、伺服驱动和输入/输出等装置上,根据这些报警灯的指示可判断故障的原因。
二、备板置换法
利用备用的电路板来替换有故障疑点的模板,是一种而简便的判断故障原因的方法,常用于CNC系统的功能模块,如CRT模块、存储器模块等。需要注意的是,备板置换前,应检查有关电路,以免由于短路而造成好板损坏,同时,还应检查试验板上的选择开关和跨接线是否与原模板一致,有些模板还要注意模板上电位器的调整。置换存储器板后,应根据系统的要求,对存储器进行初始化操作,否则系统仍不能正常工作。
为检测方便,模块或单元上设有检测端子,利用万用表、示波器等仪器仪表,通过这些端子检测到的电平或波形,将正常值与故障时的值相比较,可以分析出故障的原因及故障的所在位置。由于数控机床具有综合性和复杂性的特点,引起故障的因素是多方面的。上述故障诊断方法有时要几种同时应用,对故障进行综合分析,诊断出故障的部位,从而排除故障。同时,有些故障现象是电气方面的,但引起的原因是机械方面的;反之,也可能故障现象是机械方面的,但引起的原因是电气方面的;或者二者兼而有之。因此,对它的故障诊断往往不能单地归因于电气方面或机械方面,而加以综合,地进行考虑。
三、数据和状态检查
CNC系统的自诊断不但能在CRT显示器上显示故障报警信息,而且能以多页的“诊断地址”和“诊断数据”的形式提供机床参数和状态信息,常见的数据和状态检查有参数检查和接口检查两种。
1)参数检查数控机床的机床数据是经过一系列试验和调整而获得的重要参数,是机床正常运行的。这些数据包括增益、加速度、轮廓监控允差、反向间隙补偿值和丝杠螺距补偿值等。当受到外部干扰时,会使数据丢失或发生混乱,机床不能正常工作。
2)接口检查CNC系统与机床之间的输入/输出接口信号包括CNC系统与PLC、PLC与机床之间接口输入/输出信号。数控系统的输入/输出接口诊断能将所有开关量信号的状态显示在CRT显示器上,用“1”或“0”表示信号的有无,利用状态显示可以检查CNC系统是否已将信号输出到机床侧,机床侧的开关量等信号是否已输入到CNC系统,从而可将故障定位在机床侧或是在CNC系统。
四、交换法
在数控机床中,常有功能相同的模块或单元,将相同模块或单元互相交换,观察故障转移的情况,就能确定故障的部位。这种方法常用于伺服进给驱动装置的故障检查,也可用于CNC系统内相同模块的互换。
五、敲击法
CNC系统由各种电路板组成,每块电路板上会有很多焊点,任意虚焊或接触不良都可能出现故障。用绝缘物轻轻敲打有故障疑点的电路板、接插件或电器元件时,若故障出现,则故障很可能就在敲击的部位。
六、测量比较法
数控机床控制功能是怎样的?
一、直线控制:除控制直线轨迹的起点和终点的准确定位外,还要控制在这两点之间以指定的进给速度进行直线切削。采用这类控制的有数控铣床、数控机床和数控磨床等。
二、连续轨迹控制(或称轮廓控制):能够连续控制两个或两个以上坐标方向的联合运动。为了使刀具按照规定的轨迹加工工件的曲线轮廓,数控装置具有插补运算功能。使刀具的运动轨迹以小的误差逼近规定的轮廓曲线,并协调各坐标方向的运动速度,以便在切削过程中始终保持规定的进给速度。采用这类控制的有数控机床、数控铣床、数控磨床和加工中心等。
三、点位控制:只控制数控机床刀具或工作台从一点移动到另一点的准确定位,然后进行定点加工。加点与点之间的路径不需控制。采用这类控制的有数控钻床、数控镗床和数控坐标镗床等。
刀柄结构形式
数控机床刀具刀柄的结构形式分为整体式与模块式两种。整体式刀柄其装夹刀具的工作部分与它在机床上安装定位用的柄部是一体的。这种刀柄对机床与零件的变换适应能力较差。为适应零件与机床的变换,用户需要储备各种规格的刀柄,因此刀柄的利用率较低。模块式刀具系统是一种较的刀具系统,其每把刀柄都可通过各种系列化的模块组装而成。针对不同的加工零件和使用机床,采取不同的组装方案,可获得多种刀柄系列,从而提升刀柄的适应能力和利用率。
刀柄结构形式的选择应兼顾与经济正确:
①在加工孔径、孔深经常变化的多品种、小批量零件时,宜选用模块式刀柄,以取代大量整体式镗刀柄,降低加工成本。
②对数控机床多是机床主轴端部、换刀机械手各不相同时,宜选用模块式刀柄。由于各机床所用的中间模块(接杆)和工作模块(装刀模块)都可通用,可减少设备投资,提升工具利用率。
③对一些长期反复使用、不需要拼装的简单刀具以配备整体式刀柄为宜,使工具刚性好,(如加工零件外轮廓用的立铣刀刀柄、弹簧夹头刀柄及钻夹头刀柄等)。
数控机床浸水后的烘干要点
一、机床电器、主电机、伺服电机、步进电机、变压器等,烘箱温度设定在100℃,保温时间设定在1小时。
二、达到设定时间取出烘干的元器件、部件自然冷却。
三、升温速率:数控系统、驱动器、联接线、编码器等,烘箱温度设定在70℃,保温时间设定在4小时,升温速率:普通。
四、将受潮元器件、部件放入烘箱。
五、关闭烘箱门。